H2AX phosphorylation within the G1 phase after UV irradiation depends on nucleotide excision repair and not DNA double-strand breaks.

نویسندگان

  • Thomas M Marti
  • Eli Hefner
  • Luzviminda Feeney
  • Valerie Natale
  • James E Cleaver
چکیده

The variant histone H2AX is phosphorylated in response to UV irradiation of primary human fibroblasts in a complex fashion that is radically different from that commonly reported after DNA double-strand breaks. H2AX phosphorylation after exposure to ionizing radiation produces foci, which are detectable by immunofluorescence microscopy and have been adopted as clear and consistent quantitative markers for DNA double-strand breaks. Here we show that in contrast to ionizing radiation, UV irradiation mainly induces H2AX phosphorylation as a diffuse, even, pan-nuclear staining. UV induced pan-nuclear phosphorylation of H2AX is present in all phases of the cell cycle and is highest in S phase. H2AX phosphorylation in G(1) cells depends on nucleotide excision repair factors that may expose the S-139 site to kinase activity, is not due to DNA double-strand breaks, and plays a larger role in UV-induced signal transduction than previously realized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Residual DNA double strand breaks correlates with excess acute toxicity from radiotherapy

Introduction: A high risk for development of severe side effects after radiotherapy may be correlated with high cellular radiosensitivity. To enhance radiation therapy efficiency a fast and reliable in-vitro test is desirable to identify radiosensitive patients. The aim of present study was to identify the mechanism of radiation induced DNA double-strand breaks (DSBs) and DSB r...

متن کامل

Perturbed gap-filling synthesis in nucleotide excision repair causes histone H2AX phosphorylation in human quiescent cells.

Human histone H2AX is rapidly phosphorylated on serine 139 in response to DNA double-strand breaks and plays a crucial role in tethering the factors involved in DNA repair and damage signaling. Replication stress caused by hydroxyurea or UV also initiates H2AX phosphorylation in S-phase cells, although UV-induced H2AX phosphorylation in non-cycling cells has recently been observed. Here we stud...

متن کامل

UV-induced photolesions elicit ATR-kinase-dependent signaling in non-cycling cells through nucleotide excision repair-dependent and -independent pathways.

Activation of signaling pathways by UV radiation is a key event in the DNA damage response and initiated by different cellular processes. Here we show that non-cycling cells proficient in nucleotide excision repair (NER) initiate a rapid but transient activation of the damage response proteins p53 and H2AX; by contrast, NER-deficient cells display delayed but persistent signaling and inhibition...

متن کامل

Evaluating Gamma-H2AX Expression as a Biomarker of DNA Damage after X-ray in Angiography Patients

Objective: Coronary heart disease (CHD) is one of the most common diseases. Coronary angiography (CAG) is an important apparatus used to diagnose and treat this disease. Since angiography is performed through exposure to ionizing radiation, it can cause harmful effects induced by double-stranded breaks in DNA which is potentially life-threatening damage. The aim of the present study is to inves...

متن کامل

Generation of DNA single-strand displacement by compromised nucleotide excision repair.

Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage-induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 26  شماره 

صفحات  -

تاریخ انتشار 2006